The Design and Performance
of a Shared Disk File System
for Silicon Graphics’ Irix

Grant Erickson
Steve Soltis
Ken Preslan

Matthew O’'Keefe

Tom Ruwart

Department of Electrical and Computer Engineering
and
Laboratory for Computational Science and Engineering

UNIVERSITY OF MINNESOTA
Minneapolis, MN

gf s@cse. um. edu
http://ww. | cse. uim. edu/ GFS/



QOutline

0 Problem Definition
0 Enabling Technologies
0 Global File System

0 Architecture

0 History

0 Performance Evaluation
0 Future Work

0 Conclusions

Grant Erickson Page 2 University of Minnesota



Problem Definition

0 Widespread usage of computer networks

0 Enable distributed work environments

0 Promote sharing and exchange of information

0 Sun’s Network File System (NES) is the de facto file sharing

standard.

0 Transparent: looks and feels like a local file system
0 Portable: runs on a wide variety of client and servers

0 Robust: simple crash recovery
0 The strengths of NFS also lend to its weaknesses

0 Large files restrict work to local storage

0 Raises barriers to sharing and exchange of large data sets

Grant Erickson Page 3 University of Minnesota



NFS Limitations

0 Performance is dictated by latency and throughput of the

network

0 10 or 100 Mbps Ethernet can deliver at best only 1.2 to 11.9
MBps of bandwidth via NFS

0 NFS Server

0 Requires expensive, dedicated computer or network appliance
0 Single point of failure limits reliability and availability

0 Scales poorly in high-demand environments

0 NFS performance limitations are further aggravated by the

trend toward large file sizes

Grant Erickson Page 4 University of Minnesota



Explosive Data Growth

0 Both documents and applications are becoming more media-

rich, driving up file sizes

0 Continued growth in capacity of memories and disks promotes

further file growth

0 Example environment: digital production houses

Sneaker net is preferred data transport media

Vista Vision film format: 4096 lines of 6144 pixels per frame

At 24 frames/second — 3.0 GB for 1 second of film

0
O
0 Cineon Lighting scanner captures at 14-bits per RGB component
O
0 42 minutes to transfer using 10 Mbps Ethernet.

Grant Erickson Page 5 University of Minnesota



Enabling Technologies

0 Fibre Channel

High bandwidth, low latency network and channel interface
Highly scaleable, very flexible topologies

Becoming high-volume, hence lower-cost

O O O O

Support from a wide-variety of adapter, computer, networking,
and storage vendors

0 Supports the connection of storage devices to the network
0 Network-attached Storage (NAS)

0 Have your disks and share them too

0 Allows direct data transfer between disks and clients

0 Together, Fibre Channel and NAS enable storage area networks
(SANSs).

Grant Erickson Page 6 University of Minnesota



Global File System

0 Novel block-addressable, serverless, hardware-based solution to

distributed file systems

0 Leverages high-bandwidth and high-availability of SANs to

facilitate applications with large storage requirements.

0 Symmetric architecture

0 Modeled like a shared memory multiprocessor

0 Clients are independent and have equal access to storage

0 Hardware-based mutual exclusion locking mechanism used to

ensure data consistency

0 Layered on top of a Network Storage Pool

Grant Erickson Page 7 University of Minnesota



Network Storage Pool

0 Coalesces a heterogeneous collection of shared storage devices

into a single, logical contiguous pool of storage space

0 Allows for striping across multiple devices

0 Similar to Silicon Graphics” xlv logical volume manager

0 Devices may be divided into subpools according to device
performance characteristics
0 Provides an interface for a pool of device locks

0 Hides actually locking implementation from file system layer

0 Locks may be located on one or more storage devices or on a
dedicated lock device

Grant Erickson Page 8 University of Minnesota



A Distributed GFS Environment

Grant Erickson Page 9 University of Minnesota



Device Locks

0 Device Locks

0 Facilitate atomic read-modify-write operations

0 Similar in operation to memory locks with test-and-set and clear
operations.

0 Many locks (1 1024) per device leads to greater parallelism

0 Provide mechanism for client initiated error-recovery
0 Lock structure

0 State bit, activity bit, multi-bit counter
O State bit indicates whether lock is held or available
0 Activity bit used to initiate client-based lock recovery

0 Counter is only incremented on modify operations

0 Increase/decrease in counter resolution may be exchanged for
decrease/increase in lock quantity

Grant Erickson Page 10 University of Minnesota



File System Consistency

0 File system implements a many-to-one mapping of files to locks

0 GFS maintains perfect file consistency

Utilizes write-through caching
All client reads obtain the most recent data

O
0
0 Limits damage during client failure
0

Simplifies file system recovery

0 State of the lock counter is used for limited client-side caching of

file dinodes

Grant Erickson Page 11 University of Minnesota



GFS Organization and Architecture

0 Super block
0 Maintains mount information and static file system attributes
0 Resource Groups

0 Partitions and distributes file system resources for parallel accesses
0 Allocated per subpool in the network storage pool

0 Contains bitmaps used for block allocation

0 Similar to Allocation Groups in Silicon Graphics” XFS

0 Dynamic Block Allocation

0 Available file system blocks may be freely allocated to directory or
file dinodes, pointer blocks, or data blocks

0 Inode and dinode numbers based on storage pool address
eliminating lookup indirection

Grant Erickson Page 12 University of Minnesota



Mapping Files to Resource Groups and Subpools

Resource Group 10

Resource Group 6

Resource Group O

Directory Tree Resource Group 7

Grant Erickson Page 13 University of Minnesota



Comparison of GFS and NFS Control and Data Paths

NFS GFS

Grant Erickson Page 14 University of Minnesota



Silicon Graphics File System Interface

0 Irix file system interface based on the Virtual File System and
Virtual Node (vfs/vnode) interface

0 Developed concurrently with NFS for the Sun Microsystems Solaris
operating system

0 Extended and formalized by the UNIX System V Release 4 (SVR4)
specification

0 Although interface is standardized, implementations vary widely
0 Irix completely implements SVR4 interface specification

0 Implementation is both proprietary and undocumented

0 Significant impediment to third-party file system development

0 Proprietary implementation motivates ports to open platforms

0 Ports to open platforms eased by vfs/vnode interface

Grant Erickson Page 15 University of Minnesota



Dinode Stuffing

0 Improve small file performance

0 Directory and file dinodes

occupy an entire file system

block

0 As block size increases header
information stays constant

0 Block utilization decreases
decreases leading to internal
fragmentation

0 Place user data in the unused

dinode space

0 Reduce internal fragmentation

0 Eliminate pointer indirection

0 Eliminate and additional read
operation

Grant Erickson Page 16 University of Minnesota



Performance Evaluation

0 Bandwidth Characterization

0 Scaling Study

Grant Erickson Page 17 University of Minnesota



Historical Perspective

0 Early GFS prototype first presented at 1996 NASA /IEEE Mass

Storage Systems and Technologies conference

0 Three node Silicon Graphics Indy system

0 Modified parallel SCSI interconnect
0 Single shared Seagate Barracuda 2LP disk
0 SCSI reserve and release locking
0 Today GFSis a fully-functional distributed file system
architecture
0 Leverages the flexibility of Fibre Channel SANs
0 Support for any SCSI storage device

0 Low latency, fine-granularity device locks

Grant Erickson Page 18 University of Minnesota



First Generation Implementation

0 Initial implementation of GFS interacted with the Irix kernel in a
very limited fashion
0 Support for reading and writing data files
0 Limited directory support
0 Little or no error checking and recovery
0 Features and functionality expected of a UNIX file system and
now implemented in GFS today
Symbolic and hard file links
Access permissions

255 character file names

Execution of binaries and memory mapping of files

O O O O O

Correct and robust operation in the face of both system and user
errors

Grant Erickson Page 19 University of Minnesota



Bandwidth Characterization

0 Two parameter tests

0 Request size varied exponentially from 64 KB to 4 MB
0 Transfer, or file, size varied exponentially from 64 KB to 512 MB

0 Test configuration

Single Silicon Graphics O2 desktop workstation
Prisa NetFX PCI-32 Fibre Channel host bus adapter

Single Ciprico Rimfire 7010 Fibre Channel RAID-3

0
0
0
0 Brocade Silkworm 16-port Fibre Channel switch

0 Characterize the bandwidth for each subsystem

0 Quantify the amount of overhead incurred by each subsystem

by examining bandwidth losses

Grant Erickson Page 20 University of Minnesota



Host Adapter Bandwidth

Buffered Writa Bandwldth tor Prisa Flore Channel SC51 Driver Butferad Read Bandwldth for Prisc Fibre Channel SC8| Drivar
w/ Slicon Graphics O and Clprico RF7010 RAID w{ Blicon Graphles OF and Ciprico RFPO10 RAID

Bandwhkith {MB/a)

Bequest Size (KE)
128

1024
2048
g
B
T
@

F
o
®
]

256

-+
od
[

Grant Erickson Page 21 University of Minnesota



Network Storage Pool Bandwidth

Buifered Wrte Bandwldth for Network Storage Pool Driver Bufferad Read Bandwidth for Network Storage Fool Driver

w/ Slicon Graphics O* and Clprico RE7010 RAID w{ Blicon Graphles OF and Ciprico RFPO10 RAID

Bandwiith {MB/a}
Bandwkith {MBfa}

4054

B12 <« B
5 1
Bequest Sice (KE) . Erquest Size (KB) o = g
128 ] ] Transter Bize (KB) Transfer Bize (KE)

iy - {3
'13 =}

B4 @ 5

o

Grant Erickson Page 22 University of Minnesota



GFS Bandwidth




XFS Bandwidth




Grant Erickson

Relative Subsystem Efficiencies

Relative Hficiency

Prisa NetFX Network Global Fle XFS
Driver Sorage System
Pool Driver
Buffered I/ O
Write s
Mean 100.0% 95.6% 24.9% 87.8%
Sandard Deviation 0.00 0.03 0.08 0.90
Minimum 100.0% 90.4% 9.7% 43.7%
Maximum 100.0% 100.5% 38.8% 475.0%
Reads
Mean 100.0% 97.2% 25.7% 64.5%
Sandard Deviation 0.00 0.02 0.12 0.58
Minimum 100.0% 92.3% 14.7% 31.8%
Maximum 100.0% 103.6% 68.8% 319.0%
Direct I/ O
Write s
Mean 29.6% 112.3%
Sandard Deviation 0.19 0.53
Minimum 16.4% 94.6%
Maximum 79.1% 375.8%
Reads
Mean 31.4% 115.4%
Sandard Deviation 0.17 0.29
Minimum 16.9% 99.4%
Maximum 74.5% 215.9%
Overall
Mean 100.0% 96.4% 27.6% 90.0%
Sandard Deviation 0.00 0.03 0.15 0.63
Minimum 100.0% 90.4% 9.7% 31.8%
Maximum 100.0% 103.6% 79.1% 475.0%

Page 25

University of Minnesota



Mean I/ O Subsystem Efficiencies

Mean |/ O Subsystem Efficiencies

12000

100 L

HL L

falui

Efficiency

A0 DA

20 0%

ARNyE

Wiltas [{z1aTa b3 Wiltes Recds Chverall

Butisred Crirect

Transfer Type

Grant Erickson Page 26 University of Minnesota



Scaling Studies

0 Barrier throughput tests

0 Large transfers size of 256 MB

0 Highly parallel test —each client reads and write its own data from
its own device

0 With and without dedicated root directory device
0 Test configuration

Four Silicon Graphics Challenge XL servers
Prisa NetFX HIO-64 Fibre Channel host bus adapter

Four Ciprico Rimfire 7010 Fibre Channel RAID-3s

0
0
0
0 Brocade Silkworm 16-port Fibre Channel switch

Grant Erickson Page 27 University of Minnesota



Aggregaie Transier Ralte (MB/s)

Scalability: Shared Directory Device

0 First device contains both the file system root directory and the

first client’s data.

Throughput Speedup

9 :
-]

&
k=]

Scaled Speedup
¥
[~}

S
o
—_— —

-
400

a0

Grant Erickson Page 28 University of Minnesota



Aggregate Transier Rate (MB/s)

Scalability: Dedicated Directory Device

0 First device contains only the file system root directory.

Throughput Speedup

40

L
1680.0 |
L

1200

&
k=]

-
400

a0

Clients/Devices

Grant Erickson Page 29 University of Minnesota



Future Work

0 Ports to open platforms: Linux, FreeBSD, and NetBSD

0 Develop heuristics for the optimal sizing of file system blocks

and allocation of resource groups at file system creation

0 Hide latency of metadata accesses

0 Aggressive management of buffer cache

0 Implement logging

0 Quantify performance effects of head-of-queue lock tagging

0 Extend locking semantics to improve file system utilization

0 Allow for multiple readers or a single writer

0 Maintain fairness policy close to current implementation

0 Scaling to 8, 16, 32 and 64 clients

Grant Erickson Page 30 University of Minnesota



Conclusions

0 Metadata accesses are limiting factor in GFS performance
0 Improvements in locking semantics should improve scalability

0 GFS architecture is still viable, implementation needs further

improvement

0 Open licensing

0 Binaries for Silicon Graphics Irix 6.2 and 6.3: Today

0 Source code: Summer 1998

Grant Erickson Page 31 University of Minnesota



